树枝状大分子/纳米粒表面π体系与膜相互作用机理
表面含芳香π体系的纳米粒子在与磷脂双层接触时,可通过多种弱相互作用介导结合和穿透,包括π–π堆积、CH/π(芳香环与脂肪链CH键的相互作用)、阳离子–π作用以及疏水π作用等。研究表明,带电子云的芳香环能与膜中脂质的脂肪链或头部形成特殊稳定接触。例如,Cheng等发现在蛋白质中,磷脂酰胆碱(PC)头部的胆碱阳离子可通过形成“阳离子–π盒”与芳香残基(如酪氨酸)π平面发生强烈吸引:“the PC choline cation interaction with amino acid π systems forms the PC-specific site”。类似地,带氨基的磷脂酰乙醇胺(PE)或磷脂酰丝氨酸(PS)头部的铵离子也可与芳香π体系产生电荷–π相互作用;这些作用帮助粒子在膜表面定位。在膜疏水区,纳米粒子的芳香环可以与脂质烷基链的碳氢键形成CH–π或普通的范德华疏水作用。Efimova等研究的阳离子吡啶苯基树枝状聚合物中指出,含π键的苯基单元通过疏水作用插入脂肪链区:“hydrophobic interactions of phenylene units with the hydrocarbon tails of lipids were observed”,导致脂质双层形成缺陷。此外,π–π堆积往往发生在纳米粒子自身的芳香链之间或与另一芳香表面之间。例如,电子丰富的苯环与电子缺乏的全氟苯环有相反的电荷分布,相对的π四极矩使它们形成强稳定的π–π堆积:“the equal but opposite quadrupole moments of benzene and its highly fluorinated aromatic analogs allow… stabilizing π–π stacking interactions”。总之,各类π相互作用共同影响粒子与膜界面的结合强度、定位和动力学。
π体系电子属性对膜作用的影响
芳香基团的电子属性(富电子或缺电子)显著调节其与膜相互作用的模式。以Jordanova等人研究的两种喹啉(纳夫啶酰胺)树枝状聚合物为例:未取代的N,N-二甲基氨基-喹啉酰胺树枝体(Dab)(电子给予)深入并夹入了不饱和脂肪链的扭曲部位,使脂质尾部排序增强,而其3-溴衍生物Dab-Br(电子吸引)则主要留在脂质头部,通过静电与磷酸基作用。具体地说,作者报告:“Dab incorporates in the kink formed by POPC unsaturated tails… Dab-Br interacts electrostatically with the phosphate of phosphatidylcholine”。这表明电子丰富的π体系易插入膜疏水区,而带强吸电子基团的芳香环则倾向于停留在亲水头区,依赖静电结合。另一方面,芳香环的氟取代可彻底反转其电荷分布:蒙科维奇等指出,苯环密集的π电子云使其中心带负电,而全氟苯的π云被吸电子氟拉扯呈正电;两者形成互补四极矩,从而极易发生π–π叠加。全氟芳香族结构同时高度疏水,表现出类似“类疏水效应”的超疏水性,这意味着全氟芳香修饰的纳米粒表面对脂肪链区域具有更强的亲和力。因此,电子给出/吸引基团的引入不仅改变π–π和静电相互作用,还显著调控膜穿透和扰动能力。可见,通过化学修饰调节π体系的电子特性,是控制纳米粒膜结合方式的关键策略。
磷脂分子直接互作机理及模拟/实验证据
多项实验和模拟研究直接揭示了π基团与磷脂头部及尾部的相互机制。例如,阳离子吡啶苯基树枝体与含胆固醇的阴性脂质体研究发现:带高离子度外围(如D3^50+、D2^29+)的树枝体通过纯静电作用吸附于脂质体表面,这种结合可被盐洗脱,且不进入疏水层、对膜无破坏作用。相反,次生带负载(D2^15+)的树枝体在参与静电结合的同时,其内部苯基环还深入脂质尾部区与烷基链相互作用,形成难以逆转的缺陷。更极端的是小代(D1^6+),其高度疏水刚性结构直接破坏了膜结构,使脂质体崩解。这些结果强调了分子层面不同相互作用的协同效应。类似地,模拟研究也印证了π体系作用:All-atom MD显示,纯疏水的芳香聚合物纳米点(polydot)能自发穿透DPPC膜,而表面带羧基负电的polydot则被阻留在膜面。具体地,“不带电的芳香族polydot自发渗透膜,而羧基化的polydot需要外力才能进入膜内”。此外,石墨烯氧化物(GO)等二维π体系也与磷脂头区通过静电吸附,与尾区通过范德华力结合。一项Langmuir单层研究发现,GO同时插入DPPC的脂肪链、头部及水相中,其结合既有静电又有分散作用(类似CH/π与疏水作用)。综合来看,这些建模与实验结果从多角度验证了π相互作用在粒子–膜结合和扰动中的关键角色。
电子效应调控的实验与模拟支持
除上述具体实例外,还有不少研究通过改变π系统电子性质来测试膜相互作用的变化。例如,弗氟富化策略常用于调节π表面的极性和疏水性。蒙科维奇等的综述指出,全氟芳香体系的超疏水特征可以明显增加与脂质尾部的亲和,暗示类似改性可增强穿膜能力。实验上,对比带有不同电子属性取代基的树枝体也证实了这一点:富电子纳夫啶系树枝体导致脂肪链排列有序,而缺电子衍生物则主要作用于头部。另外,对于肽/蛋白体系,使用氟化芳香氨基酸替代技术可以区分c-π与膜插入效应,佐证了π电子密度对结合模式的影响。总体而言,既有的模拟和实验数据一致表明:通过引入电子给出/吸引基团改变π平面的极性与疏水性,确实会调控纳米粒与膜相互作用的强度和性质。
其他纳米粒示例
虽然上述例子主要涉及树枝状聚合物,但类似机制也见于其他芳香表面纳米粒。例如,以DPPC为模型脂质,酯芳烃聚合物(polydots)插入研究表明,无论纳米粒大小如何,其表面疏水度决定了跨膜能力。图1示例中展示了DPPC分子和聚对苯乙炔(polydot)结构,对应模拟中中性polydot穿透膜层,而阴离子端基化polydot留在膜表面。此外,类似石墨烯、纳米颗粒或有机微球等,只要表面含芳香π体系,同样可通过上述π相互作用机制调节膜结合。综上所述,不论是树枝体还是其他纳米粒,修饰不同π体系(电子云密度或取代基)均能显著影响其与磷脂分子的相互作用模式和生物界面行为。
表面刚性疏水结构对膜相互作用的影响
- 疏水“锚定”作用:研究指出,金刚烷等刚性脂环可作为脂质双层膜的“锚”。例如,Štimac等提出了“adamantane as an ‘anchor’ in the lipid bilayer”的概念,实验证实将金刚烷锚基引入脂质体后可牢固插入双层膜。类似地,带有疏水金刚烷基团的氨基脲化合物被包封在磷脂胆固醇脂质体中,其与膜的相互作用“could be ascribed mainly to the adamantane moiety”,提示金刚烷基团是驱动插入脂双层的主要因素。因此,引入刚性疏水环烃显著增强粒子与疏水膜内核的亲和力,促进吸附和插入。与此相对,未修饰或强正电荷表面的树枝状大分子往往只能通过静电吸附于膜表面而不易穿透。
- 膜结构扰动与通透性:疏水芳香环或烯烃基团可引发双层膜缺陷和通透性改变。Efimova等系统研究发现,当树枝状大分子外围带有一定量的疏水苯基单元时,苯基与脂质烷基链发生疏水相互作用,导致双层出现不可逆缺陷。例如,对应混合性树枝体 (D₂₁₅⁺) 在磷脂体中形成双层缺陷;而高度疏水且空间刚性的G1树枝体 (D₁₆⁺) 则“caused significant destruction of liposomal membranes”。相反,完全带电的树枝体 (D₃₅₀⁺、D₂₂₉⁺) 仅通过静电吸附在膜表面,不穿透内层,也不破坏膜结构。在脂质体模型中,带有疏水金刚烷基团的胍盐化合物使膜通透率略增(诱导约15%的荧光染料泄漏),但其结合疏水尾插入膜内核后并未引起剧烈破坏。相反,一旦外源疏水域在膜内形成有序域(如四氢萘或脂链聚集),可促进脂质重组。Verma等发现,表面具有有序排列的交替疏/亲水基团的纳米颗粒能“penetrate the plasma membrane without bilayer disruption”,而随机分布的则主要被内体捕获。这说明表面刚性序列化排列有利于非内吞通道穿膜。
- 膜蛋白/脂质重排效应:高分子–膜相互作用可诱导膜成分重排。文献指出,大分子结合膜后常伴随脂质或膜蛋白的聚集,促进脂质跨膜迁移并提高膜离子通透性。例如,AFM 实验证实,嵌入脂双层的金刚烷-肽链自发聚集成“域”(domain),将活性取代基(如糖基)暴露于膜外。这一“域”聚集机制表明,刚性疏水基团一面插入膜内,一面让亲水/活性团显示在外,可介导膜-膜间或膜蛋白识别、囊泡聚集,而无需破坏膜完整性。
细胞摄取效率与途径
- 摄取效率提高:引入疏水刚性基团通常能增强纳米粒子的细胞内化效率。树枝状大分子修饰大量疏水苯基或脂链后,整体疏水性提高,有利于跨膜扩散或内吞。例如,一项研究发现含ClPhIQ苯基配体的G4 PAMAM树枝体,其脂溶性显著上升,从而“allows for the dendrimeric molecule to pass into the cell”。相反,末端带亲水胺基的树枝体氨基质子化后很难穿透疏水膜。此外,多阳离子金刚烷基分支树枝体(HYDRAmers)在巨噬细胞和上皮细胞中表现出极高的摄取率,说明刚性疏水骨架有利于细胞吸收。
- 内吞途径选择性:不同修饰可改变纳米粒子进入细胞的途径。Russier等报道,多阳离子金刚烷基树枝体的一/二代在不同细胞中主要通过不同途径内化:第一代主要经由clathrin介导内吞和巨胞饮,而第二代对这些通路抑制剂的敏感性明显降低。这提示,修饰基团的类型和构型可调控主要内吞途径。另有研究表明,若粒子表面排列有序,可实现部分能量无关的直接穿膜(见上文)。总体来看,正电荷和疏水性增强的粒子往往进入内体/溶酶体途径,而高度有序或超疏水表面则可能绕过传统内吞通路直接进入胞质。
分子作用机理
- 疏水相互作用:刚性疏水基团(环烃、芳香或烯烃)通过疏水嵌入膜内核,提高粒子–膜结合。例如,上述胍盐化合物表明其脂链“could interact with the lipid bilayer with hydrophobic interactions as well, and not only with electrostatic interactions”。同样,苯环单元与脂双链的强疏水相互作用可导致双层缺陷。因此,疏水相互作用是插入和膜扰动的主要驱动力。
- 空间刚性诱导插入:刚性基团(如金刚烷笼)通过固定空间构型增强穿膜。金刚烷的笼状结构和高立体阻力使其在膜内形成稳定锚点。这种刚性使得带金刚烷的分子在膜内形成紧密“域”,难以散逸,同时将亲水部分推向膜外。与之类似,具有芳香环的刚性树枝体在插入膜时稳定性更高,可形成难逆转的膜缺陷。
- 聚集行为:表面刚性疏水基团还可诱导纳米粒子自身和膜组分的聚集。如前述,胍盐金刚烷分子在载于脂质体后,促使互补载脂体粘附并形成多室结构。Verma等观察到的条纹状纳米粒子穿膜现象也暗示粒子可聚集形成有利于穿膜的排列。这种聚集与有序排列可改变局部膜曲率或张力,从而促进渗透。
- 膜蛋白协同作用:虽然文献对膜蛋白特异性较少报道,但已有研究表明聚合物–膜相互作用可伴随膜蛋白的重排。例如,一些树枝体结合膜时可引起膜上蛋白和脂质的聚集。这可能意味着修饰表面基团还能影响纳米粒子与膜蛋白受体的相互作用,进而改变内吞和信号传导过程。
综上所述,表面修饰的刚性脂环、芳香环或烯基通过增强疏水性和刚性,明显调控了纳米粒子与细胞膜的相互作用:它们作为膜内核的“锚”,促进纳米粒子插入和聚集,从而诱导双层膜缺陷或增强膜通透性;同时,这些修饰基团显著影响细胞摄取效率和途径,如金刚烷基树枝体可高效进入细胞并根据代数和官能团性质选择不同的内吞机制。这些发现为设计具有特定膜-粒子界面行为的表面工程纳米载体提供了指导:通过合理引入刚性疏水基团和调控其空间排列,可以实现对粒子吸附、穿膜和细胞内化路径的精确控制。